

PIR Vento F

Descrizione del prodotto

PIR Vento F è un pannello termoisolante costituito da un componente isolante in schiuma polyiso, espansa senza l'impiego di CFC o HCFC, rivestito su una faccia da velo vetro mineralizzato e su quella esposta maggiormente al rischio incendi, da un velo vetro addizionato con grafite espandibile.

Principali applicazioni

- Isolamento di pareti ventilate
- Isolamento di tutte le applicazioni ove sia richiesta un'eccellente prestazione di reazione al fuoco.

Spessori e dimensioni

Finitura superficiale	Lunghezza	Larghezza	Spessore
	(mm)	(mm)	(mm)
Su una faccia da velo vetro mineralizzato e su quella esposta maggiormente al rischio incendi, da un velo vetro addizionato con grafite espandibile.	1200	600	da 20 a 300 spigolo vivo

Voce di capitolato

Lastra in schiuma rigida PIR a celle chiuse, rivestito su un lato con velo vetro bitumato con pellicola in polipropilene anti fiamma e sull'altro lato con velo vetro con rivestimento mineralizzato, tipo PIR Vento F. Conforme ai Criteri Ambientali Minimi (CAM) mediante certificazione di prodotto rilasciata da ICMQ secondo UNI EN ISO 14021 e dichiarazione ambientale di prodotto secondo EN 15804+A1:2013. Prodotto da azienda certificata con: sistema di gestione della qualità UNI EN ISO 9001:2015. La lastra, marcata CE secondo UNI EN 13165:2016, garantisce le seguenti proprietà: conduttività termica dichiarata a 10°C λ_D 0,027 W/m*K (EN 12667) per spessori inferiori a 70 mm; 0,025 W/m*K (EN 12667) per spessori 80 e 100 mm; 0,024 W/m*K (EN 12667) per spessori superiori a 120 mm; resistenza a compressione al 10% di deformazione ≥150 kPa (EN 826); classe di reazione al fuoco Bs1d0 (EN 13501-1).

AVVERTENZA

Questo documento tecnico ha lo scopo di fornire informazioni sulle caratteristiche del prodotto. Le indicazioni in esso contenute sono basate sulle nozioni e le esperienze fino ad oggi acquisite attraverso le varie applicazioni edili da noi affrontate; pertanto, prima di adoperare il prodotto, chi intenda farne uso, è tenuto a stabilire se esso sia o meno adatto all'impiego previsto e, comunque, si assume ogni responsabilità che possa derivare dal suo uso. Esse non costituiscono alcuna garanzia di ordine giuridico. Swisspor AG si riserva il diritto di apportare in qualsiasi momento modifiche e variazioni che riterrà opportune.

Documento Tecnico PIR Vento F

Pannelli isolanti in schiuma rigida PIR

Caratteristiche	Unità di misura	Codifica secondo EN 13165	Valore	Norma di prova		
_						
CARATTERISTICHE TERMOIGROMETRICHE						
Conducibilità termica dichiarata a 10°C						
≤70 mm	W/m*K	$\lambda_{ extsf{D}}$	0,027	EN 12667		
80-100 mm	W/m*K	$\lambda_{ extsf{D}}$	0,025	EN 12667		
≥120 mm	W/m*K	λ_{D}	0,024	EN 12667		
Resistenza termica dichiarata R _D						
Spessore 50 mm	m²·K/W	R_D	1,85			
Spessore 60 mm	m²·K/W	R_D	2,20			
Spessore 70 mm	m²·K/W	R_D	2,55			
Spessore 80 mm	m²·K/W	R_D	3,20			
Spessore 100 mm	m²·K/W	R_D	4,00			
Spessore 120 mm	m²·K/W	R_D	5,00			
Spessore 140 mm	m²·K/W	R_D	5,80			
Spessore 160 mm	m²·K/W	R_D	6,65			
Resistenza alla diffusione del vapore		μ	120-40	EN12086		
CARATTERISTICHE MECCANICHE						
Resistenza a compressione (con deformazione del 10%)	kPa	CS(10/Y)150	≥150	EN826		
Resistenza a compressione (con deformazione ≤ 2% dopo 50 anni)	kPa	CC(2/1,5/50)	≥25	EN1606		
Resistenza a trazione perpendicolare alle facce	kPa	TR80	≥80	EN1605		
CARATTERISTICHE FISICHE						
Reazione al fuoco		EUROCLASSE	Bs1d0	EN13501-1		
Massa volumica apparente	Kg/m ³	ρ	30 ± 2	Produttore		
Stabilità dimensionale (-20°C per 48 h)	%	DS(-20,-)2	≤0,5/≤2	EN1604		
Stabilità dimensionale (70°C e 90% U.R. per 48 h)	%	DS(70,90)	≤3 /≤8	EN 1604		
Assorbimento d'acqua per immersione parziale per breve periodo	Kg/m ²	WS(P)	0,2	EN 1609		
Temperatura limite di utilizzo	°C		+90	Produttore		
Calore specifico	Wh/(kg·K)		0,39	EN10456		